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Most attacks on networks and infor-
mation systems begin by exploiting

a vulnerability in a software application
that is resident on a host computer, serv-
er, or even an appliance designed to pro-
vide network defense. Addressing these
vulnerabilities is currently very labor
intensive, requiring constant updates and
patches. All of us have become accus-
tomed to receiving software security
updates on an almost daily basis for many
of our commonly used applications.
Terms such as denial of service, phishing,
botnets, and spamming are all becoming
part of our everyday vernacular, and our
collective concern.

Current technological and educational
efforts seek to ensure the security of
future applications. Most approaches to
resolving today’s security concerns focus
on single-point solutions. Furthermore,
millions of lines of existing software that
comprise our legacy systems must be
secured to defend those information sys-
tems on which our national infrastructure
depends. Unfortunately, today’s software
engineers are not typically trained in the
development of secure software systems.
Implementation of application security
requires that the programmer be an
expert not only in the application

domain, but also in secure coding prac-
tices. Our universities are beginning to
add security to the software educational
curriculum so that new graduates can dis-
tinguish good practices from bad as they
translate software designs into source
code. The Department of Homeland
Security has created a publicly available
Web site to capture best practices in
developing secure software at <https://
buildsecurityin.us-cert.gov>. However,
even when a programmer is trained in
best practices for secure programming, it
is unrealistic to depend upon the pro-
grammer to develop code that is absent
of vulnerabilities.

To supplant the ad-hoc security
enhancing efforts of today and meet the
challenges of tomorrow, an automated
method is needed to identify and guard
against runtime exploits while remaining
flexible and agile as security policies
change and evolve. In this article, we
present research work in progress to
develop a system that ensures that C
programs enforce a wide variety of user-
defined security policies with a mini-
mum of runtime overhead and disrup-
tion to development processes. In the
future, our system can be extended to
handle multiple languages and comple-

ment new security solutions.

What Is Dynamic Data Flow
Analysis (DDFA)?
DDFA is an extensible, compiler-based
system that automatically instruments the
source code of arbitrary C programs to
enforce a user-specified security policy.
The system does not require any modifi-
cation to the original source code by the
developer and also does not significantly
degrade a program’s runtime perfor-
mance. Moreover, it has the ability to
simultaneously enforce many different
classes of security vulnerabilities.

The DDFA system is built upon the
Broadway static data flow analysis and
error checking system, which is a source-
to-source translator for C developed by
the computer sciences department at the
University of Texas at Austin (UT-Austin)
[1]. UT-Austin and the Southwest Re-
search Institute (SwRI) are collaborating
to enhance the Broadway specification
language and analysis infrastructure with a
dependence analysis, instrumentation
engine, and a dynamic data flow library.

Figure 1 shows the overall architecture
of the DDFA system. Input to the
Broadway compiler consists of the source
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code of an untrusted program and a secu-
rity policy specification file. The output is
an enhanced version of the original source
code that has been automatically instru-
mented with DDFA runtime library calls.
The modified program is then compiled
for the platform of choice so that its secu-
rity policy can be enforced at runtime
using dynamic data flow analysis. The sys-
tem does not require hardware or operat-
ing system changes.

The primary design goals are the fol-
lowing:
1. Minimize the required developer

involvement.
2. Minimize runtime overhead of the

secured program.
3. Provide sufficient generality for multi-

level security support and enough
extensibility for future capabilities.
Minimizing developer involvement is

achieved through a security policy speci-
fication file that is independent of the
program. A security policy is defined
once by a security expert using a simple
language, which has a direct mapping to
the Application Programming Interface
to which the program is written. The
policy, once defined, can be applied to
many different programs. The DDFA
approach is easily integrated into the
development workflow, adding only an
additional compilation step before appli-
cation deployment.

To minimize the runtime overhead of
an executing program, the DDFA
approach builds on the body of research
in static analysis and leverages semantic
information provided by the security pol-
icy to enable optimizations beyond stan-
dard compiler techniques. This results in
a program that is instrumented with addi-
tional code only where provably necessary,
so innocuous flows of data are not
tracked at runtime, thus keeping runtime
overhead low.

For sufficient generality and extensibil-
ity in security exploits, a dynamic data flow
analysis approach is used instead of a
more traditional dynamic taint analysis [2,
3, 4]. Taint analysis tracks the flow of
tainted data (i.e., data originating from the
potential attacker) through the system at
runtime and then checks that the tainted
data is not misused. Our approach extends
on the generality of taint tracking by rec-
ognizing that taint tracking is a special case
of data flow tracking (DDFA). Whereas
taint analysis typically tracks one bit of
information, data flow analysis can track
multiple bits of information and can com-
bine the information in more flexible ways
than taint analysis. This allows our
approach to support multi-level security

and provide a higher level of generality
that could be used for other unanticipated
security challenges in the future.

Table 1 identifies exploits that can
and cannot be handled by taint-based sys-
tems. Since the DDFA approach sup-
ports general data flow tracking, it can
handle all of these exploits, and can do so

simultaneously. Such generality will
become particularly important as devel-
opers move to memory-safe languages
such as Java and C#, where the use of
taint tracking to enforce secure control
flow is not as important. Security vulner-
abilities that are not currently addressed
by the DDFA approach include those
such as covert timing channel vulnerabil-
ities, since they are outside the scope of
data flow analysis [5].

How Does DDFA Work?
In this section, we will discuss in more
detail the components of the DDFA sys-
tem and how they work. The components

include the following: the policy specification,
static data flow analysis, instrumentation engine,
and DDFA.

Policy Specification
The policy specification is defined using
the Broadway specification language [1, 6].
It is a simple declarative language that is
used to tell the compiler how to perform
specific data flow analysis by supplying
rules. The two high-level items to specify
are the lattice definition and the summaries
for the library functions and system calls.

A lattice must be defined for each type
of analysis to be performed. For example,
in a format string attack, taint analysis can
be used. A lattice called Taint would be
defined with two flow values, Tainted and
Untainted. Furthermore, Untainted is placed
higher than Tainted to signify that when
the two flow values are combined on a
particular object being tracked, the result
should be the lower of the two, Tainted.
Lattices naturally model hierarchical secu-
rity levels and are ideal for reasoning
about multilevel security and access con-
trol that go beyond taint tracking, such as
role-based access control (RBAC) [7].

Summaries for the library functions
and system calls define how the lattice
flow values are introduced into the sys-
tem, how the flow values propagate
through the system, and how to track
unsafe use of the lattice flow values.
Continuing our format string attack exam-
ple, the following specification declares
that data introduced into the system
through the network library call recv()
would always be tainted:

procedure recv(s, buf , len, flags)
{
on_entry { buf gg buffer }
analyze Taint { buffer ff Tainted }
}

Here, the on_entry keyword describes func-
tion parameters relevant to the analysis
and gives a name, buffer, to the object
pointed to by buf. The analyze keyword
describes the effect of the function on lat-
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tice flow values.
To allow the compiler to reason about

the propagation of tainted data, the fol-
lowing specification of the library system
call strdup() declares that it returns a point-
er to string_copy and that string_copy should
have whatever taintedness that string has:
procedure strdup(s)
{
on_entry { s gg string }
on_exit { return gg string_copy }
analyze Taint { string_copy ff string }
} 

Finally, to track the unsafe use of tainted
data, an error handler would be specified
as follows in the summary for a library call
such as printf() (an ultimate perpetrator in a
format string attack) when unsafe data is
actually used:

procedure printf(format, args)
{
on_entry { format gg format_string }
error_if (Taint : format_string could-be
Tainted)
fsv_error_handler();

}

Here, the error keyword signals to the com-
piler that special action is required when
the condition is met.

Unlike most taint tracking systems, the
security policy (lattice and summary decla-
rations) and underlying analysis is not
hardcoded into the compiler or runtime
system. Instead, this semantic information
for the analysis is provided in a separate
specification file. This separation allows
the system to remain general and flexible
enough to enforce a wide variety of secu-
rity policies.

Some insight into the generality and
flexibility of the DDFA system can be
demonstrated by how it guards against file
disclosure attacks which cannot be handled
with traditional taint tracking systems. For
the analysis, two lattices must be defined
as follows to track the origin of data and
its trustedness:

property Kind : { File, Filesystem, Client,
Server, Pipe, Command,

StandardIO, Environment,
SystemInfo, NameServer }

property Trust : { Remote, External,
Internal }

For a true file disclosure problem, only
File is used, but this definition could be
reused for other policies that need to dis-
tinguish between other sources. For the
sake of brevity, summaries for how lattice

flow values are introduced into the system
and how those flow values are propagated
will not be shown here, as it is somewhat
similar to the previous format string attack
example. The following specification
defines a violation of the policy where File
data from a file with Remote trustedness is
sent to a server socket with Remote trust
(indicating that it was initiated by a remote
user):

procedure write(fd, buf_ptr, size)
{
on_entry { fd gg IOHandle, buf_ptr gg

buffer }
error if ( (Trust : buffer could-be Remote

&& Kind : buffer could-be File) &&
(Trust : IOHandle could-be Remote

&& Kind : IOHandle could-be Server) )
file_disclosure_error_handler()

}

Static Data Flow Analysis
To avoid the cost of tracking all objects at
runtime, the DDFA system performs
inter-procedural data flow analysis that
identifies all program locations where pol-
icy violations might occur. A subsequent
inter-procedural analysis identifies all pro-
gram statements that affect the lattice
flow value of objects that may trigger a
policy violation. Both of these compiler
passes are supported by a fast and precise
pointer analysis for potentially aliased
data.

The first pass statically identifies all
possible violations of the security policy.
If the analysis can prove that there are no
such vulnerabilities in the program, no
further analysis or instrumentation is
needed. When analysis determines that a
vulnerability exists or cannot determine if
a vulnerability is genuine, additional analy-
sis is needed to determine where instru-

mentation is required.
The second pass is an inter-procedural

dependence analysis that identifies all the
statements in the program that affect the
flow value of objects that may trigger a
security violation. This pass provides a list
of statements to the instrumentation
engine to be inserted into the original
source code so that dynamic data flow
analysis can be performed at runtime.

Pointer analysis is necessary for mem-
ory of unsafe languages like C and C++
because objects could have many different
pointers pointing to them, making it trick-
ier to reason precisely about the flow of
data. The limited scalability of pointer
analysis has stymied previous attempts to
apply inter-procedural analysis to dynamic
taint tracking [8]. However, the DDFA
system makes use of a highly scalable and
accurate client-driven pointer analysis that
leverages the semantic information pro-
vided by the security policy to dramatical-
ly reduce the amount of code that needs
to be instrumented [9, 10].

Instrumentation Engine 
The instrumentation engine uses the
results from static data flow analysis to
determine where in the program addi-
tional code must be inserted to support
the dynamic data flow analysis at run-
time. The instrumentation engine also
uses the semantics of the security policy
specification to determine which particu-
lar calls from the DDFA runtime library
will be inserted into the program.
Continuing our format string attack
example, the following C code snippet
shows how the network library call recv()
would be instrumented if static analysis
determines that it may introduce suspect
data into the system:

recv(sock_fd, recv_msg, 10, 0);
ddfa_insert(DDFA_LTAINT, recv_msg,
strlen(recv_msg), DDFA_LTAINT_
TAINTED);

The ddfa_insert() call sets the memory
region occupied by the string object
recv_msg as tainted. Any attempt to copy
the data occupied by this object to anoth-
er memory region or to use this data in an
unsafe manner would pass the flow value
tainted to the copied object or trigger the
error handler respectively. To support
propagation of tainted data, the following
code snippet shows how the library call
strdup() would be instrumented:

copy_msg = strdup(recv_msg);
ddfa_copy_flowval(DDFA_LTAINT,
copy_msg, recv_msg, strlen(copy_msg));

“One of the most
important benefits in

using the DDFA
system is that it works
on existing C programs
and does not require

the developer to make
any changes to the

original source code.”
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Finally, the following code snippet shows
how the library call printf() would be
instrumented to conditionally invoke an
error handler before unsafe use of tainted
data occurs:

if ( ddfa_check_flowval(DDFA_LTAINT,
copy_msg, DDFA_LTAINT_TAINTED) )
fsv_error_handler();
printf(copy_msg);

This example illustrates how the
DDFA approach can go much further
than simply detecting vulnerabilities, as
with purely static approaches, by allowing
the original program to execute securely
even if the programmer does not fix the
underlying problem. Additionally, the flow
of the original program is not affected
unless a potential unsafe use of tainted
data is detected.

DDFA
The DDFA is supported by the DDFA
runtime library and, for each type of
analysis, tracks the lattice flow values for
all objects identified by the static analysis
as potentially unsafe. Our system tracks
object flow values at the byte level, which
provides fine-grained tracking that is nec-
essary in memory unsafe languages such
as C. If an unsafe use of an object occurs,
the error handler specified in the security
policy will be invoked before the object is
actually used in an unsafe manner.

Effectiveness of the DDFA
Approach
In this section we will address, in both
objective and subjective terms, the effec-
tiveness of the DDFA approach.

Minimizing Impact on Development
Processes
One of the most important benefits in
using the DDFA system is that it works
on existing C programs and does not
require the developer to make any
changes to the original source code. The
developer need only recompile their pro-
gram with the DDFA system to create a
security-enhanced version of their origi-
nal source code. If not using one of the
default policy specifications provided by
our system such as taint tracking or file dis-
closure vulnerability, a security expert can
extend the system by creating a new pol-
icy specification file. In contrast, to
extend a conventional taint tracking sys-
tem to something other than taint track-
ing, core components of the compiler
infrastructure would have to be rewrit-
ten. In the DDFA system, the only

change is in the policy specification file
itself. This also allows new security poli-
cies to be developed quickly in response
to new attacks, resulting in a more agile
response to the ever-changing security
environment.

Although the DDFA approach cur-
rently requires the source code of the
application as input to the system instead
of the binary executable, it does not
require the implementation source code
of the library functions and system calls
that appear as summaries in the policy
specification file. Only an understanding
of the behavior of the function calls is
required. Moreover, the work described
in this article is part of an ongoing
research program, which has as a longer-
term goal of applying the DDFA
approach to binary executables. This
could be an evolutionary step in the
research, since the DDFA system already
performs its analysis on a low-level repre-
sentation of the input program.
However, there are challenges in moving
to binary because significant information
that is leveraged in minimizing the per-
formance impacts of security insertion is
lost in the compilation process.

Another related aspect of our system
is that the security enforcement is added
to the program after it has been devel-
oped. This opens up many new software
engineering possibilities such as code
separation. In-house software will be
more maintainable and agile because it is
unfettered by security concerns. Likewise,
commercial off-the-shelf and open
source software can be brought into a
highly trusted environment and then
automatically made more secure. It also
allows an organization to keep their secu-
rity policy specification private when sub-
contracting software development to out-
side organizations.

Minimizing Performance Overhead
Another important benefit is that the
DDFA approach takes advantage of the
fact that only a very small portion of a
program is actually involved in any given

security attack [11]. Identifying this small
portion of the program, however, requires
sophisticated static analysis. Without this
analysis, large portions of the program
would have to be instrumented, substan-
tially increasing the program’s runtime
overhead.

In order to quantify the runtime
overhead that is incurred on programs
enhanced by the DDFA system, we mea-
sured the runtime overhead for two dif-
ferent sets of open-source C programs. In
the first set, we measured response time
or throughput for several different serv-
er type programs with considerable
input/ output. We took measurements
against the original program and then
again after instrumentation by the
DDFA system (in this case, applying a
taint-based policy specification). As
shown in Table 2, our solution has an
average overhead of 0.65 percent. The
current fastest compiler-based and
dynamically optimized systems report
server application overhead of 3-7 per-
cent, and 6 percent, respectively [12, 13].

In the second test set, we measured
Standard Performance Evaluation
Corpo-ration (SPEC) workloads of four
SPECint 2000 benchmarks that are
computer-bound applications after per-
forming a format string vulnerability
analysis. In each case, our static analysis
determines that the programs contain
no such vulnerability, as expected. Thus,
the true overhead for these examples is
zero percent. In order to understand the
impact of our system on computer-
bound programs that do contain vulner-
abilities, we manually inserted a vulnera-
bility into each of the benchmarks. As
can be seen in Table 3, the average run-
time overhead is less than 13 percent,
which is significantly better than the best
previously reported averages of 75-260
percent [12, 13].

Minimizing Code Expansion
Because our system adds instrumentation
to the source program, it expands the pro-
grams static code size. To quantify this
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property, we measured code expansion by
comparing the sizes of the original and
modified binary executables after per-
forming taint tracking on the server pro-
grams mentioned previously. As can be
seen in Table 4, the average expansion is
less than 1 percent. Compiler-based sys-
tems such as the GNU Image-Finding
Tool report 30-60 percent increases in
binary size [8].

Related Capabilities and Future
Directions
Finally, another important benefit of the
DDFA system is that the technology is
applicable to future threats and other
areas that are not specific to security. For
example, systems that depend on seman-
tic information such as information flow
(i.e., privacy concerns) or access controls
can be enhanced by our system without
modifying the core infrastructure. We
recently demonstrated this generality by
showing that the policy specification file
can be used to define roles in a RBAC
system, and then subsequently applied to
a set of software that previously did not
have RBAC. The DDFA system can go
beyond problems such as buffer over-
flows and overwrite attacks that continue
to plague legacy languages and solve
problems affecting even safer languages
such as Java and C#. These languages are
not immune to attacks like SQL injection
and cross-site scripting that depend on
semantic, not language-level, errors in
data handling. DDFA, along with the

semantic information captured by the
policy specification, can address these
types of problems.

Our challenge, therefore, is to devel-
op solutions that can both be applied to
existing legacy software today for imme-
diate benefits while also looking forward
to the more sophisticated challenges that
face us in the future. We believe that the
DDFA system is well positioned to pro-
vide a practical approach to enhancing
the security of legacy software in the near
future. We are also continuing our
research in increasing the scalability of
pointer analysis, integrating language-
independence into the DDFA technolo-
gy, as well as researching and testing the
breadth of applicability of the approach
itself.u
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Library

Table 3: Runtime Overhead for Computer-
Bound Programs Performing Format String
Vulnerability
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